This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an ...

Buy Now From Amazon

Product Review

This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.
In this volume, the distinguished mathematician offers an exposition of set theory and the continuum hypothesis that employs intuitive explanations as well as detailed proofs. The self-contained treatment includes background material in logic and axiomatic set theory as well as an account of Kurt Gödel's proof of the consistency of the continuum hypothesis. An invaluable reference book for mathematicians and mathematical theorists, this text is suitable for graduate and postgraduate students and is rich with hints and ideas that will lead readers to further work in mathematical logic.


Similar Products

Naive Set Theory (Dover Books on Mathematics)The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise (Dover Books on Mathematics);An;Dover Books on MathematicsZermelo's Axiom of Choice: Its Origins, Development, and Influence (Dover Books on Mathematics)The Axiom of Choice (Dover Books on Mathematics)Axiomatic Set Theory (Dover Books on Mathematics)On Formally Undecidable Propositions of Principia Mathematica and Related SystemsModel Theory: Third Edition (Dover Books on Mathematics)Contributions to the Founding of the Theory of Transfinite Numbers (Dover Books on Mathematics)Introduction to Topology: Third Edition (Dover Books on Mathematics)Undecidable Theories: Studies in Logic and the Foundation of Mathematics (Dover Books on Mathematics)