Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are d...

Buy Now From Amazon

Product Review

Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong.
Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics.
You'll find advice on:
  • Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan
  • How to think about p values, significance, insignificance, confidence intervals, and regression
  • Choosing the right sample size and avoiding false positives
  • Reporting your analysis and publishing your data and source code
  • Procedures to follow, precautions to take, and analytical software that can help
Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know.
The first step toward statistics done right is Statistics Done Wrong.


Similar Products

Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber DucksNaked Statistics: Stripping the Dread from the DataHow to Lie with StatisticsPractical Statistics for Data Scientists: 50 Essential ConceptsThe Art of Statistics: How to Learn from DataThe Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth CenturyWhat is a p-value anyway? 34 Stories to Help You Actually Understand StatisticsThe Seven Pillars of Statistical WisdomSpurious CorrelationsThe Model Thinker: What You Need to Know to Make Data Work for You