Product Review
Approx. 25 mm - 30 mm. Weight 10 gm. Pouch Available. Platonic solids are completely regular solids whose faces are equiangular and equilateral polygons of equal size. An identical number of faces meet at each vertex. Mathematically speaking, the solids are regular polyhedrons (multi-sided), i.e. particularly uniform convex polyhedrons. There are just 5 Platonic solids: tetrahedra, hexahedra, octahedra, dodecahedra and icosahedra. The oldest man-made Platonic solids are over 4000 years old. Carved in stone balls, they are tetrahedra, hexahedra, octahedra and dodecahedra that were found in different places in Scotland. The first architectural structures based on the octahedron, pyramids, were built at about the same time in Egypt and Central America. The mathematical laws governing the three Platonic solids tetrahedron, hexahedron, and dodecahedron were first studied about 2500 years ago by the Pythagoreans, a community founded by Pythagoras of Samos (570 - 496 B.C.) dedicated to the exploration of mathematics, astronomy, ethics and religion. A mathematical postulation for the remaining 2 solids, octahedron and icosahedron, as well as proof that exactly 5 Platonic solids exist, was ultimately brought by the Greek mathematician Theaetetus (415 - 396 B.C.). The Greek philosopher Plato (428 - 348 B.C.) described the solids extensively later on in his book "Timaios" and allotted them to the elements within the Platonic world view. According to his theory the world consists of the 4 basic elements fire, water, air and earth. In turn, these basic elements consist of small, indivisible atoms which, again according to Plato, have the shapes of the Platonic solids. The 4 elements are individually allotted to the solids as follows; the dodecahedron was added later as 'fifth' element.